skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bertolet, Brittni L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT A major challenge in ecology is to understand how different species interact to determine ecosystem function, particularly in communities with large numbers of co‐occurring species. We use a trait‐based model of microbial litter decomposition to quantify how different taxa impact ecosystem function. Furthermore, we build a novel framework that highlights the interplay between taxon traits and environmental conditions, focusing on their combined influence on community interactions and ecosystem function. Our results suggest that the ecosystem impact of a taxon is driven by its resource acquisition traits and the community functional capacity, but that physiological stress amplifies the impact of both positive and negative interactions. Furthermore, net positive impacts on ecosystem function can arise even as microbes have negative pairwise interactions with other taxa. As communities shift in response to global climate change, our findings reveal the potential to predict the biogeochemical functioning of communities from taxon traits and interactions. 
    more » « less
  2. Lake sediment microbial communities mediate carbon diagenesis. However, microbial community composition is variable across lakes, and it is still uncertain how variation in community composition influences sediment responses to environmental change. Sediment methane (CH 4 ) production has been shown to be substantially elevated by increased lake primary productivity and organic matter supply. However, the magnitude of the response of CH 4 production varies across lakes, and recent studies suggest a role for the microbial community in mediating this response. Here, we conducted sediment incubation experiments across 22 lakes to determine whether variation in sediment microbial community composition is related to the response of sediment CH 4 production to increases in organic matter. We sampled the 22 lakes across a gradient of pH in order to investigate lakes with variable sediment microbial communities. We manipulated the incubations with additions of dried algal biomass and show that variation in the response of CH 4 production to changes in organic matter supply is significantly correlated with metrics of sediment microbial community composition. Specifically, the diversity and richness of the non-methanogen community was most predictive of sediment CH 4 responses to organic matter additions. Additionally, neither metrics of microbial abundance nor preexisting organic matter availability explained meaningful variation in the response. Thus, our results provide experimental support that differences in sediment microbial communities influences CH 4 production responses to changes in organic matter availability. 
    more » « less
  3. Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. Lake primary production is strongly controlled by inputs of nutrients and colored dissolved organic matter. While past studies have developed mathematical models of this nutrient-color paradigm, broad empirical tests of these models are scarce. We compiled data from 58 diverse and globally distributed and mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. These lakes varied widely in size (0.02-2300 km2), pelagic gross primary production (20-8000 mg C m-2 d-1), and other characteristics. The data package includes high-frequency dissolved oxygen, water temperature, wind speed, and solar radiation data as well as daily estimates of GPP and ER derived from those data. In addition, the data package includes median in-lake and stream concentrations of dissolved organic carbon and total phosphorus for a subset of 18 of those lakes. 
    more » « less
  4. Abstract Lake sediment microbial communities vary across ecosystems and are often differentiated across pH. Additionally, these pH‐mediated differences in community composition are often correlated with changes in sediment functioning, such as methane and carbon dioxide production. However, few studies have experimentally tested pH effects on community assembly or considered how microbial community composition influences ecosystem function independent of differences in the environment. We used common garden experiments to test hypotheses about how pH influences microbial community assembly and function in lake sediments. Using inoculum from three acidic lakes and three near‐neutral lakes, we found that both pH environment and inoculum source significantly influenced sediment microbial community assembly. However, inoculum source had a larger effect size for both the sediment methanogen and nonmethanogen communities, indicating important roles of dispersal and drift. Additionally, inoculum source, but not pH environment, significantly influenced sediment methane and carbon dioxide production. This research is one of the first to experimentally test the influence of pH on sediment microbial community composition, and in doing so, we show the community composition significantly influences sediment function independent of pH. Understanding how lake sediment microbial communities are influenced by environment is the first step toward mechanistically linking changes in community composition to ecosystem function, and we provide critical evidence for how changes in microbial community assembly with environmental change will likely alter carbon cycling in lake sediments. 
    more » « less